Cálculo diferencial e integral.
Language: Spanish Publication details: México Limusa 2015Description: xiv, 686 páginas; figuras, tablas, gráficos; 23 x 15.5 cmISBN:- 9789681811785
- 515.33 G765
Item type | Current library | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|
Libros | CIBESPAM-MFL | 515.33 / G765 (Browse shelf(Opens below)) | Ej: 1 | Available | 001308 | ||
Libros | CIBESPAM-MFL | 515.33 / G765 (Browse shelf(Opens below)) | Ej: 2 | Available | 001309 |
CAPÍTULO I. Resumen de fórmulas.
--Fórmulas de álgebra y geometría elementales.
--Fórmulas de trigonometría plana.
--Fórmulas de geometría analítica plana
--Fórmulas de geometría analítica del espacio
--Alfabeto griego.
CAPÍTULO II. Variables, funciones y límites.
--Variables y constantes
--Intervalo de una variable
--Variación continua
--Funciones
--Variables independientes y dependientes
--Notación de funciones
--La división por cero, excluÍda.
--Gráfica de una función: continuidad.
--Límite de una variable
--Límite de una función
--Teoremas sobre límites
--Funciones continuas y discontinuas
--Infinito
--Infinitésimos
--Teoremas relativos a infinitésimos y límites.
CAPÍTULO III. Derivación.
--Introducción
--Incrementos
--Comparación de incrementos
--Derivada de una función de una variable
--Símbolos para representar las derivadas
--Funciones derivables
--Regla general para la derivación
--Interpretación geométrica de la derivada.
CAPÍTULO IV. Reglas para derivar funciones algebraicas.
--Importancia de la regla general
--Derivada de una constante
--Derivada de una variable con respecto a si misma
--Derivada de una suma
--Derivada del producto de una constante por una función
--Derivada del producto de dos funciones
--Derivada del producto de n funciones, siendo n un número fijo.
--Derivada de la potencia de una función, siendo el exponente constante
--Derivada de un cociente
--Derivada de una función de función
--Relacióin entre las derivadas de las funciones inversas
--Funciones implícitas
--Derivación de funciones implícitas.
CAPÍTULO V. Aplicaciones de la derivada.
--Dirección de una curva
--Ecuaciones de la tangente y la normal
--Longitudes de la subtangente y la subnormal
--Valores máximo y mínimo de una función: introducción.
--Funciones crecientes y decrecientes.
--Máximos y mínimos de una función: definiciones
--Primer método para calcular los máximos y los mínimos de una función. Regla guía en las aplicaciones
--Máximos o mínimos cuando f(x) se vuelve infinita y f(x) es continua.
--Problemas sobre máximos y mínimos
--La derivada como rapidez de variación
--Velocidad en un movimiento rectilíneo
--Relación entre la rapidez de variación de variables relacionadas.
CAPÍTULO VI. Derivadas sucesivas de una función. Aplicaciones.
--Definición de las derivadas sucesivas
--Obtención de las derivadas sucesivas en funciones implícitas
--Sentido de la concavidad de una curva
--Segundo método para determinar máximos y mínimos
--Puntos de inflexión
--Método para construcción de curvas dadas por su ecuación
--Aceleración en un movimiento rectilíneo.
CAPÍTULO VII. Derivación de funciones trascendentes. Aplicaciones.
--Fórmulas de derivación: lista segunda.
--El número
--Logaritmos naturales
--Funciones exponenciales y logarítmicas
--Derivación de la función logarítmica
--Derivación de la función exponencial general. Demostración de la regla de potencias.
--Derivación logarítmica.
--Función sen x
--Otras funciones trigonométricas.
CAPÍTULO VIII. Aplicaciones a las ecuaciones paramétricas y polares y al cálculo de las raíces de una ecuación.
--Ecuaciones paramétricas de una curva. Pendiente
--Ecuaciones paramétricas. Segunda derivada
--Movimiento curvilíneo. Velocidad
--Movimiento curvilíneo . Aceleraciones componentes.
--Coordenadas polares. Ángulo que forman el radio vector y la tangente.
--Longitudes de la subtangente y la subnormal en cordenadas polares
--Raíces reales de las ecuaciones. Métodos gráficos
--Segundo método para localizar las raíces reales.
--Método de Newton.
CAPÍTULO IX. Diferenciales.
--Introducción
--Definiciones
--La diferencial como aproximación del incremento
--Errores pequeños
--Fórmulas para hallar las diferenciales de funciones
--Diferencial del arco en coordenadas cartesianas rectangulares
--Diferencial del arco en coordenadas polares
--La velocidad como rapidez de variación de la longitud del arco con respecto al tiempo.
--Las diferenciales como infinitésimos
--Ordenes de infiinitésimos
--Diferenciales de orden superior
CAPÍTULO X. Curvatura. Radio de curvatura. Circuito de curvatura.
--Curvatura
--Curvatura de la circunferencia
--Fórmulas para la curvatura (coordenadas rectangulares)
--Fórmula especial para las ecuaciones paramétricas
--Fórmula para la curvatura (coordenadas polares)
--Radio de curvatura
--Curvas de ferrocarril; curvas de transición
--Círculo de curvatura
--Centro de curvatura
--Evolutas
--Propiedades de la evoluta
--Las envolventes y su construcción mecánica
--Transformación de derivadas.
CAPÍTULO XI. Teorema del valor medio y sus aplicaciones.
--Teorema de Rolle
--Círculo osculador
--Punto límite de la intersección de dos normales infínitamente próximas
--Teorema del valor medio
--Formas indeterminadas
--Determinación del valor de una función cuando ésta toma una forma indeterminada.
--Determinación del valor de la forma indeterminada.
CAPÍTULO XII. Integración de formas elementales ordinarias.
--Integración--Constante de integración-- Integral indefinida--Reglas para integrar laas formas elementales ordinarias--Demostración de las fórmulas--Integración de diferenciales trigonométricas--Integración por sustitución trigonométrica.
CAPÍTULO XIII. Constante de integración.
--Determinación de la constante de integración por medio de condiciones iniciales--Significado geométrico--Significado físico de la constante de integración.
CAPÍTULO XIV. Integral definida.
--Diferencial del área bajo una curva--La integral definida--Cálculo de una integral definida--Cambio de límites correspondientes a un cambio de la variable--Cálculo de áreas--Cálculo del área cuando las ecuaciones de la curva se dan en forma paramétrica--Representación geométrica de una integral--Integración aproximada. Fórmula de los trapecios--Fórmula de Simpson (fórmula parabólica)--Intercambio de límites--Descomposición del intervalo de integración en una integral definida--La integral definida es una función de sus límites--Integrales impropias. Límites infinitos--Integrales impropias.
CAPÍTULO XV. La integración como suma.
--Introducción--Teorema fundamental del cálculointegral--Demostración analítica del teorema fundamental--Áreas de superficie limitadas por curvas planas; coordenadas rectangulares--Áreas de curvas planas; coordenadas polares--Volúmenes de sólidos de revolución--Longitud de un arco de curva--Longitudes de arcos de curvas planas; coordenadas rectangulares--Longitudes de arcos de curvas planas; coordenadas polares--Áreas de superficies de revolución--Sólidos cuyas secciones transversales se conocen.
CAPÍTULO XVI. Artificios de integración.
--Introducción--Integración de fracciones racionales--Integración por sustitución de una nueva variable; racionalización--Diferenciales binomias--Condiciones de racionalización de la diferencial binomia--Transformación de las diferenciales trigonométricas--Sustituciones diversas.
CAPÍTULO XVII. Fórmulas de reducción.
--Introducción--Fórmulas de reducción para las diferenciales binomias--Fórmulas de reducción para las diferenciales trigonométricas--Empleo de una tabla de integrales.
CAPÍTULO XVIII. Centros de gravedad. Presión de líquidos. Trabajo. Valor medio.
--Momento de superficie; centro de gravedad--Centro de gravedad de un sólido de revolución--Presión de líquidos--Trabajo--Valor medio de una función.
CAPÍTULO XIX. Series.
--Definiciones--La serie geométrica--Series convergentes y divergentes--Teoremas generales--Criterios de comparación--Criterio de D`Alembert--Series alternadas--Convergencia absoluta--Resumen--Series de potencia--La serie binómica--Otro tipo de serie de potencia.
CAPÍTULO XX. Desarrollo de funciones en serie de potencia.
--Serie de Maclaurin--Operaciones con series infinitas--Derivación e integración de series de potencias--Deducción de fórmulas aproximadas de la serie Maclaurin--Serie de Taylor--Otra forma de la serie de Taylor--Fórmulas aproximadas deducidas de la serie de Taylor.
CAPÍTULO XXI. Ecuaciones diferenciales ordinarias.
--Ecuaciones diferenciales: orden y grado--Soluciones de una ecuación diferencial. Constantes de integración--Verificación de las soluciones de ecuaciones diferenciales--Ecuaciones diferenciales de primer orden y de primer grado--Dos tipos especiales de ecuaciones diferenciales de orden superior--Ecuaciones diferenciales lineales de segundo orden con coeficientes constantes--Aplicaciones. Ley de interés compuesto--Aplicaciones a problemas de mecánica--Ecuaciones diferenciales lineales de enésimo orden con coeficientes constantes.
CAPÍTULO XXII. Funciones hiperbólicas.
--Seno y coseno hiperbólicos--Otras funciones hiperbólicas--Tabla de valores de senos, cosenos y tangentes hiperbólicos. Gráficas--Funciones hiperbólicas de v y w--Derivadas--Relaciones con la hipérbola equilátera--Funciones hiperbólicas inversas--Derivadas (continuación)--Línea telefráfica--Integrales--Integrales (continuación)--El gudermaniano--Carta de Mercator--Relaciones entre las funciones trigonométricas y las hiperbólicas.
CAPÍTULO XXIII. Derivadas parciales.
--Funciones de dos o más variables. Continuidad--Derivadas parciales--Interpretación geométrica de las derivadas parciales--Diferencial total--Valor aproximado del incremento total.Errores pequeños--Derivadas totales. Razones de variación--Cambio de variables--Derivación de funciones implicitas--Derivadas de orden superior.
CAPÍTULO XXIV. Aplicaciones de las derivadas parciales.
--Envolvente de una familia de curvas--La evoluta de una curva dada considerada como la envolvente de sus normales--Ecuaciones de la tangente y del plano normala una curva alabeada--Longitud de un arco de curva alabeada--Ecuaciones de la normal y del plano tangente a una superficie--Interpretación geométrica de la diferencial total--Otra forma de las ecuaciones de la tangente y el plano normal a una curva alabeada--Teorema del valor medio--Máximos y mínimos de funciones de varias variables--Teorema de Taylor para funciones de dos o más variables.
CAPÍTULO XXV. Integrales múltiples.
--Integración parcial y sucesiva--Integral doble definida. Interpretación geométrica--Valor de una integral doble definida extendida a una región--Área de una superficie plana como integral doble definida--Volumen bajo una superficie--Instrucciones para establecer, en la práctica, una integral doble--Momento de una superficie y centros de gravedad--Teorema de Pappus--Centro de presión de líquidos--Momento de inercia de una superficie--Momento polar de inercia--Coordenadas polares. Área plana.
CAPÍTULO XXVI . Curvas importantes.
--Parábola cúbica, parábola semicúbica, la bruja de Agnesi, cisoide de Diocles--Lemniscata de Bernoulli--concoide de Nicomedes--cicloide ordinaria, cicloide con vértice en el orígen, catenaria, parábola--Astroide evoluta de la elipse.
CAPÍTULO XXVII. Tabla de integrales.
There are no comments on this title.