Modern operating systems. (Record no. 1460)

MARC details
000 -CABECERA
Longitud fija campo de control 19595ntdaa2200301 ab4500
003 - IDENTIFICADOR DEL NÚMERO DE CONTROL
Identificador del número de control UnInEc
005 - FECHA Y HORA DE LA ÚLTIMA TRANSACCIÓN
Fecha y hora de la última transacción 20180802205806.0
006 - CÓDIGOS DE INFORMACIÓN DE LONGITUD FIJA - CARACTERÍSTICAS DEL MATERIAL ADICIONAL
Códigos de información de longitud fija - Características del material adicional a||||g ||i| 00| 0
008 - CÓDIGOS DE INFORMACIÓN DE LONGITUD FIJA
Códigos de información de longitud fija   140501s9999 mx ||||f |||| 00| 0 spa d
020 ## - NÚMERO INTERNACIONAL NORMALIZADO PARA LIBROS
Número Internacional Normalizado para Libros (ISBN) 9780133591620
020 ## - NÚMERO INTERNACIONAL NORMALIZADO PARA LIBROS
Número Internacional Normalizado para Libros (ISBN) 013359162X
040 ## - FUENTE DE LA CATALOGACIÓN
Centro catalogador de origen CIBESPAM MFL
041 ## - CÓDIGO DE LENGUA
Código de lengua del texto;banda sonora o título independiente eng.
082 ## - NÚMERO DE LA CLASIFICACIÓN DECIMAL DEWEY
Número de clasificación 005.43
Cutter T164
Dato adicional 2015
100 ## - PUNTO DE ACCESO PRINCIPAL-NOMBRE DE PERSONA
Nombre de persona Tanenbaum, Andrew S.
245 ## - MENCIÓN DE TÍTULO
Título Modern operating systems.
250 ## - MENCIÓN DE EDICIÓN
Mención de edición Fourth Edition
260 ## - PUBLICACIÓN, DISTRIBUCIÓN, ETC. (PIE DE IMPRENTA)
Lugar de publicación, distribución, etc. Amsterdam, The Netherlands
Nombre del editor, distribuidor, etc. Pearson Education
Fecha de publicación, distribución, etc. 2015
300 ## - DESCRIPCIÓN FÍSICA
Extensión xxvi, 1101 páginas;
Otras características físicas fig, tablas;
505 ## - NOTA DE CONTENIDO CON FORMATO
Nota de contenido con formato CHAPTER 1 "INTRODUCTION"<br/>1.1 WHAT IS AN OPERATING SYSTEM? 3<br/> 1.1.1 The Operating System as an Extended Machine 4<br/> 1.1.2 The Operating System as a Resource Manager 5<br/>1.2 HISTORY OF OPERATING SYSTEMS 6<br/> 1.2.1 The First Generation (1945-55): Vacuum Tubes 7<br/> 1.2.2 The Second Generation (1955-65): Transistors and Batch Systems 8<br/> 1.2.3 The Third Generation (1965-1980): ICs and Multiprogramming 9<br/> 1.2.4 The Fourth Generation (1980-Present): Personal Computers 15<br/> 1.2.5 The Fifth Generation (1990-Present): Mobile Computers 19<br/>1.3 COMPUTER HARDWARE REVIEW 20<br/> 1.3.1 Processors 21<br/> 1.3.2 Memory 24<br/> 1.3.3 Disks 27<br/> 1.3.4 I/O Devices 28<br/> 1.3.5 Buses 32<br/> 1.3.6 Booting the Computer 34<br/>1.4 THE OPERATING SYSTEM ZOO 35<br/> 1.4.1 Mainframe Operating Systems 35<br/> 1.4.2 Server Operating Systems 35<br/> 1.4.3 Multiprocessor Operating Systems 36<br/> 1.4.4 Personal Computer Operating Systems 36<br/> 1.4.5 Handheld Computer Operating Systems 36<br/> 1.4.6 Embedded Operating Systems. 37<br/> 1.4.7 Sensor-Node Operating Systems 37<br/> 1.4.8 Real-Time Operating Systems 37<br/> 1.4.9 Smart Card Operating Systems 38<br/>1.5 OPERATING SYSTEM CONCEPTS 38<br/> 1.5.1 Processes 39<br/> 1.5.2 Address Spaces 41<br/> 1.5.3 Files 41<br/> 1.5.4 Input/Output 45<br/> 1.5.5 Protection 45<br/> 1.5.6 The Shell 45<br/> 1.5.7 Ontogeny Recapitulates Phylogeny 47<br/>1.6 SYSTEM CALLS 50<br/> 1.6.1 System Calls for Process Management 53<br/> 1.6.2 System Calls for File Management 56<br/> 1.6.3 System Calls for Directory Management 57<br/> 1.6.4 Miscellaneous System Calls 59<br/> 1.6.5 The Windows Win32 API 60<br/>1.7 OPERATING SYSTEM STRUCTURE 62<br/> 1.7.1 Monolithic Systems 63<br/> 1.7.2 Layered Systems 64<br/> 1.7.3 Microkernels 65<br/> 1.7.4 Client-Server Model 68<br/> 1.7.5 Virtual Machines 69<br/> 1.7.6 Exokernels 73<br/>1.8 THE WORLD ACCORDING TO C 73<br/> 1.8.1 The C Language 73<br/> 1.8.2 Header Files 74<br/> 1.8.3 Large Programming Projects 75<br/> 1.8.4 The Model of Run Time 76<br/>1.9 RESEARCH ON OPERATING SYSTEMS 77<br/>1.10 OUTLINE OF THE REST OF THIS BOOK 78<br/>1.11 METRIC UNITS 79<br/>1.12 SUMMARY 80<br/>CHAPTER 2 "PROCESSES AND THREADS"<br/>2.1 PROCESSES 85<br/> 2.1.1 The Process Model 86<br/> 2.1.2 Process Creation 88<br/> 2.1.3 Process Termination 90<br/> 2.1.4 Process Hierarchies 91<br/> 2.1.5 Process States 92<br/> 2.1.6 Implementation of Processes 94<br/> 2.1.7 Modeling Multiprogramming 95<br/>2.2 THREADS 97<br/> 2.2.1 Thread Usage 97<br/> 2.2.2 The Classical Thread Model 102<br/> 2.2.3 POSIX Threads 106<br/> 2.2.4 Implementing Threads in User Space 108<br/> 2.2.5 Implementing Threads in the Kernel 111<br/> 2.2.6 Hybrid Implementations 112<br/> 2.2.7 Scheduler Activations 113<br/> 2.2.8 Pop-Up Threads 114<br/> 2.2.9 Making Single-Threaded Code Multithreaded 116<br/>2.3 INTERPROCESS COMMUNICATION 119<br/> 2.3.1 Race Conditions 119<br/> 2.3.2 Critical Regions 121<br/> 2.3.3 Mutual Exclusion with Busy Waiting 122<br/> 2.3.4 Sleep and Wakeup 127<br/> 2.3.5 Semaphores 130<br/> 2.3.6 Mutexes 132<br/> 2.3.7 Monitors 137<br/> 2.3.8 Message Passing 144<br/> 2.3.9 Barriers 146<br/> 2.3.10 Avoiding Locks: Read-Copy-Update 148<br/>2.4 SCHEDULING 149<br/> 2.4.1 Introduction to Scheduling 150<br/> 2.4.2 Scheduling in Batch Systems 156<br/> 2.4.3 Scheduling in Interactive Systems 158<br/> 2.4.4 Scheduling in Real-Time Systems 164<br/> 2.4.5 Policy Versus Mechanism 165<br/> 2.4.6 Thread Scheduling 166<br/>2.5 CLASSICAL IPC PROBLEMS 167<br/> 2.5.1 The Dining Philosophers Problem 167<br/> 2.5.2 The Readers and Writers Problem 171<br/>2.6 RESEARCH ON PROCESSES AND THREADS 172<br/>2.7 SUMMARY 173<br/>CHAPTER 3 "MEMORY MANAGEMENT"<br/>3.1 NO MEMORY ABSTRACTION 182<br/>3.2 A MEMORY ABSTRACTION: ADDRESS SPACES 185<br/> 3.2.1 The Notion of an Address Space 186<br/> 3.2.2 Swapping 187<br/> 3.2.3 Managing Free Memory 190<br/>3.3 VIRTUAL MEMORY 194<br/> 3.3.1 Paging 195<br/> 3.3.2 Page Tables 198<br/> 3.3.3 Speeding Up Paging 201<br/> 3.3.4 Page Tables for Large Memories 205<br/>3.4 PAGE REPLACEMENT ALGORITHMS 209<br/> 3.4.1 The Optimal Page Replacement Algorithm 209<br/> 3.4.2 The Not Recently Used Page Replacement Algorithm 210<br/> 3.4.3 The First-In, First-Out (FIFO) Page Replacement Algorithm 211<br/> 3.4.4 The Second-Chance Page Replacement Algorithm 212<br/> 3.4.5 The Clock Page Replacement Algorithm 212<br/> 3.4.6 The Least Recently Used (LRU) Page Replacement Algorithm 213<br/> 3.4.7 Simulating LRU in Software 214<br/> 3.4.8 The Working Set Page Replacement Algorithm 215<br/> 3.4.9 The WSClock Page Replacement Algorithm 219<br/> 3.4.10 Summary of Page Replacement Algorithms 221<br/>3.5 DESIGN ISSUES FOR PAGING SYSTEMS 222<br/> 3.5.1 Local versus Global Allocation Policies 222<br/> 3.5.2 Load Control 225<br/> 3.5.3 Page Size 225<br/> 3.5.4 Separate Instruction and Data Spaces 227<br/> 3.5.5 Shared Pages 228<br/> 3.5.6 Shared Libraries 229<br/> 3.5.7 Mapped Files 231<br/> 3.5.8 Cleaning Policy 232<br/> 3.5.9 Virtual Memory Interface 232<br/>3.6 IMPLEMENTATION ISSUES 233<br/> 3.6.1 Operating System Involvement with Paging 233<br/> 3.6.2 Page Fault Handling 234<br/> 3.6.3 Instruction Backup 235<br/> 3.6.4 Locking Pages in Memory 237<br/> 3.6.5 Backing Store 237<br/> 3.6.6 Separation of Policy and Mechanism 239<br/>3.7 SEGMENTATION 240<br/> 3.7.1 Implementation of Pure Segmentation 243<br/> 3.7.2 Segmentation with Paging: MULTICS 243<br/> 3.7.3 Segmentation with Paging: The Intel x86 247<br/>3.8 RESEARCH ON MEMORY MANAGEMENT 252<br/>3.9 SUMMARY 253<br/>CHAPTER 4 "FILE SYSTEMS"<br/>4.1 FILES<br/> 4.1.1 File Naming<br/> 4.1.2 File Structure<br/> 4.1.3 File Types<br/> 4.1.4 File Access<br/> 4.1.5 File Attributes<br/> 4.1.6 File Operations<br/> 4.1.7 An Example Program Using File-System Calls<br/>4.2 DIRECTORIES<br/> 4.2.1 Single-Level Directory Systems<br/> 4.2.2 Hierarchical Directory Systems<br/> 4.2.3 Path Names<br/> 4.2.4 Directory Operations<br/>4.3 FILE SYSTEM IMPLEMENTATION<br/> 4.3.1 File-System Layout<br/> 4.3.2 Implementing Files<br/> 4.3.3 Implementing Directories<br/> 4.3.4 Shared Files<br/> 4.3.5 Log-Structured File Systems<br/> 4.3.6 Journaling File Systems<br/> 4.3.7 Virtual File Systems<br/>4.4 FILE-SYSTEM MANAGEMENT AND OPTIMIZATION<br/> 4.4.1 Disk-Space Management<br/> 4.4.2 File-System Backups<br/> 4.4.3 File-System Consistency<br/> 4.4.4 File-System Performance<br/> 4.4.5 Defragmenting Disks<br/>4.5 EXAMPLE FILE SYSTEMS<br/> 4.5.1 The MS-DOS File System<br/> 4.5.2 The UNIX V7 File System<br/> 4.5.3 CD-ROM File Systems<br/>4.6 RESEARCH ON FILE SYSTEMS<br/>4.7 SUMMARY<br/>CHAPTER 5 "INPUT/OUTPUT"<br/>5.1 PRINCIPLES OF I/O HARDWARE<br/> 5.1.1 I/O Devices<br/> 5.1.2 Device Controllers<br/> 5.1.3 Memory-Mapped I/O<br/> 5.1.4 Direct Memory Access<br/> 5.1.5 Interrupts Revisited<br/>5.2 PRINCIPLES OF I/O SOFTWARE<br/> 5.2.1 Goals of the I/O Software<br/> 5.2.2 Programmed I/O<br/> 5.2.3 Interrupt-Driven I/O<br/> 5.2.4 I/O Using DMA<br/>5.3 I/O SOFTWARE LAYERS<br/> 5.3.1 Interrupt Handlers<br/> 5.3.2 Device Drivers<br/> 5.3.3 Device-Independent I/O Software<br/> 5.3.4 User-Space I/O Software<br/>5.4 DISKS<br/> 5.4.1 Disk Hardware<br/> 5.4.2 Disk Formatting<br/> 5.4.3 Disk Arm Scheduling Algorithms<br/> 5.4.4 Error Handling<br/> 5.4.5 Stable Storage<br/>5.5 CLOCKS<br/> 5.5.1 Clock Hardware<br/> 5.5.2 Clock Software<br/> 5.5.3 Soft Timers<br/>5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR<br/> 5.6.1 Input Software<br/> 5.6.2 Output Software<br/>5.7 THIN CLIENTS<br/>5.8 POWER MANAGEMENT<br/> 5.8.1 Hardware Issues<br/> 5.8.2 Operating System Issues<br/> 5.8.3 Application Program Issues<br/>5.9 RESEARCH ON INPUT/OUTPUT<br/>5.10 SUMMARY<br/>CHAPTER 6 "DEADLOCKS"<br/>6.1 RESOURCES<br/> 6.1.1 Preemptable and Nonpreemptable Resources<br/> 6.1.2 Resource Acquisition<br/>6.2 INTRODUCTION TO DEADLOCKS<br/> 6.2.1 Conditions for Resource Deadlocks<br/> 6.2.2 Deadlock Modeling<br/>6.3 THE OSTRICH ALGORITHM<br/>6.4 DEADLOCK DETECTION AND RECOVERY<br/> 6.4.1 Deadlock Detection with One Resource of Each Type<br/> 6.4.2 Deadlock Detection with Multiple Resources of Each Type<br/> 6.4.3 Recovery from Deadlock<br/>6.5 DEADLOCK AVOIDANCE<br/> 6.5.1 Resource Trajectories<br/> 6.5.2 Safe and Unsafe States<br/> 6.5.3 The Banker's Algorithm for a Single Resource<br/> 6.5.4 The Banker's Algorithm for Multiple Resources<br/>6.6 DEADLOCK PREVENTION<br/> 6.6.1 Attacking the Mutual Exclusion Condition<br/> 6.6.2 Attacking the Hold and Wait Condition<br/> 6.6.3 Attacking the No Preemption Condition<br/> 6.6.4 Attacking the Circular Wait Condition<br/>6.7 OTHER ISSUES<br/> 6.7.1 Two-Phase Locking<br/> 6.7.2 Communication Deadlocks<br/> 6.7.3 Livelock<br/> 6.7.4 Starvation<br/>6.8 RESEARCH ON DEADLOCKS<br/>6.9 SUMMARY<br/>CHAPTER 7 "VIRTUALIZATION AND THE CLOUD"<br/>7.1 HISTORY<br/>7.2 REQUIREMENTS FOR VIRTUALIZATION<br/>7.3 TYPE 1 AND TYPE 2 HYPERVISORS<br/>7.4 TECHNIQUES FOR EFFICIENT VIRTUALIZATION<br/> 7.4.1 Virtualizing the Unvirtualizable<br/> 7.4.2 The Cost of Virtualization<br/>7.5 ARE HYPERVISORS MICROKERNELS DONE RIGHT?<br/>7.6 MEMORY VIRTUALIZATION<br/>7.7 I/O VIRTUALIZATION<br/>7.8 VIRTUAL APPLIANCES<br/>7.9 VIRTUAL MACHINES ON MULTICORE CPUS<br/>7.10 LICENSING ISSUES<br/>7.11 CLOUDS<br/> 7.11.1 Clouds as a Service<br/> 7.11.2 Virtual Machine Migration<br/> 7.11.3 Checkpointing<br/>7.12 CASE STUDY: VMWARE<br/> 7.12.1 The early history of VMware<br/> 7.12.2 VMware Workstation<br/> 7.12.3 Challenges in Bringing Virtualization to the x86<br/> 7.12.4 VMware Workstation: Solution Overview<br/> 7.12.5 The Evolution of VMware Workstation<br/> 7.12.6 ESX Server: VMware's type-1 hypervisor<br/>7.13 RESEARCH ON VIRTUALIZATION AND THE CLOUD<br/>CHAPTER 8 "MULTIPLE PROCESSOR SYSTEMS"<br/>8.1 MULTIPROCESSORS<br/> 8.1.1 Multiprocessor Hardware<br/> 8.1.2 Multiprocessor Operating System Types<br/> 8.1.3 Multiprocessor Synchronization<br/> 8.1.4 Multiprocessor Scheduling<br/>8.2 MULTICOMPUTERS<br/> 8.2.1 Multicomputer Hardware<br/> 8.2.2 Low-Level Communication Software<br/> 8.2.3 User-Level Communication Software<br/> 8.2.4 Remote Procedure Call<br/> 8.2.5 Distributed Shared Memory<br/> 8.2.6 Multicomputer Scheduling<br/> 8.2.7 Load Balancing<br/>8.3 DISTRIBUTED SYSTEMS<br/> 8.3.1 Network Hardware<br/> 8.3.2 Network Services and Protocols<br/> 8.3.3 Document-Based Middleware<br/> 8.3.4 File-System-Based Middleware<br/> 8.3.5 Object-Based Middleware<br/> 8.3.6 Coordination-Based Middleware<br/>8.4 RESEARCH ON MULTIPLE PROCESSOR SYSTEMS<br/>8.5 SUMMARY<br/>CHAPTER 9 "SECURITY"<br/>9.1 THE SECURITY ENVIRONMENT<br/> 9.1.1 Threats<br/> 9.1.2 Attackers<br/>9.2 OPERATING SYSTEMS SECURITY<br/> 9.2.1 Can We Build Secure Systems?<br/> 9.2.2 Trusted Computing Base<br/>9.3 CONTROLLING ACCESS TO RESOURCES<br/> 9.3.1 Protection Domains<br/> 9.3.2 Access Control Lists<br/> 9.3.3 Capabilities<br/>9.4 FORMAL MODELS OF SECURE SYSTEMS<br/> 9.4.1 Multilevel Security<br/> 9.4.2 Covert Channels<br/>9.5 BASICS OF CRYPTOGRAPHY<br/> 9.5.1 Secret-Key Cryptography<br/> 9.5.2 Public-Key Cryptography<br/> 9.5.3 One-Way Functions<br/> 9.5.4 Digital Signatures<br/> 9.5.5 Trusted Platform Module<br/>9.6 AUTHENTICATION<br/> 9.6.1 Authentication Using a Physical Object<br/> 9.6.2 Authentication Using Biometrics<br/>9.7 EXPLOITING SOFTWARE<br/> 9.7.1 Buffer Overflow Attacks<br/> 9.7.2 Format String Attacks<br/> 9.7.3 Dangling Pointers<br/> 9.7.4 Null Pointer Dereference Attacks<br/> 9.7.5 Integer Overflow Attacks<br/> 9.7.6 Command Injection Attacks<br/> 9.7.7 Time of Check to Time of Use (TOCTOU) Attacks<br/>9.8 INSIDER ATTACKS<br/> 9.8.1 Logic Bombs<br/> 9.8.2 Back Doors<br/> 9.8.3 Login Spoofing<br/>9.9 MALWARE<br/> 9.9.1 Trojan Horses<br/> 9.9.2 Viruses<br/> 9.9.3 Worms<br/> 9.9.4 Spyware<br/> 9.9.5 Rootkits<br/>9.10 DEFENSES<br/> 9.10.1 Firewalls<br/> 9.10.2 Antivirus and Anti-Antivirus Techniques<br/> 9.10.3 Code Signing<br/> 9.10.4 Jailing<br/> 9.10.5 Model-Based Intrusion Detection<br/> 9.10.6 Encapsulating Mobile Code<br/> 9.10.7 Java Security<br/>9.11 RESEARCH ON SECURITY<br/>9.12 SUMMARY<br/>CHAPTER 10 "CASE STUDY 1: UNIX, LINUX, AND ANDROID"<br/>10.1 HISTORY OF UNIX AND LINUX<br/> 10.1.1 UNICS<br/> 10.1.2 PDP-11 UNIX<br/> 10.1.3 Portable UNIX<br/> 10.1.4 Berkeley UNIX<br/> 10.1.5 Standard UNIX<br/> 10.1.6 MINIX<br/> 10.1.7 Linux<br/>10.2 OVERVIEW OF LINUX<br/> 10.2.1 Linux Goals<br/> 10.2.2 Interfaces to Linux<br/> 10.2.3 The Shell<br/> 10.2.4 Linux Utility Programs<br/> 10.2.5 Kernel Structure<br/>10.3 PROCESSES IN LINUX<br/> 10.3.1 Fundamental Concepts<br/> 10.3.2 Process Management System Calls in Linux<br/> 10.3.3 Implementation of Processes and Threads in Linux<br/> 10.3.4 Scheduling in Linux<br/> 10.3.5 Booting Linux<br/>10.4 MEMORY MANAGEMENT IN LINUX<br/> 10.4.1 Fundamental Concepts<br/> 10.4.2 Memory Management System Calls in Linux<br/> 10.4.3 Implementation of Memory Management in Linux<br/> 10.4.4 Paging in Linux<br/>10.5 INPUT/OUTPUT IN LINUX<br/> 10.5.1 Fundamental Concepts<br/> 10.5.2 Networking<br/> 10.5.3 Input/Output System Calls in Linux<br/> 10.5.4 Implementation of Input/Output in Linux<br/> 10.5.5 Modules in Linux<br/>10.6 THE LINUX FILE SYSTEM<br/> 10.6.1 Fundamental Concepts<br/> 10.6.2 File System Calls in Linux<br/> 10.6.3 Implementation of the Linux File System<br/> 10.6.4 NFS: The Network File System<br/>10.7 SECURITY IN LINUX<br/> 10.7.1 Fundamental Concepts<br/> 10.7.2 Security System Calls in Linux<br/> 10.7.3 Implementation of Security in Linux<br/>10.8 ANDROID<br/>10.9 SUMMARY<br/>CHAPTER 11 "CASE STUDY 2: WINDOWS 8"<br/>11.1 HISTORY OF WINDOWS THROUGH WINDOWS 8.1<br/> 11.1.1 1980s: MS-DOS<br/> 11.1.2 1990s: MS-DOS-based Windows<br/> 11.1.3 2000s: NT-based Windows<br/> 11.1.4 Windows Vista<br/> 11.1.5 2010s: Modern Windows<br/>11.2 PROGRAMMING WINDOWS<br/> 11.2.1 The Native NT Application Programming Interface<br/> 11.2.2 The Win32 Application Programming Interface<br/> 11.2.3 The Windows Registry<br/>11.3 SYSTEM STRUCTURE<br/> 11.3.1 Operating System Structure<br/> 11.3.2 Booting Windows<br/> 11.3.3 Implementation of the Object Manager<br/> 11.3.4 Subsystems, DLLs, and User-Mode Services<br/>11.4 PROCESSES AND THREADS IN WINDOWS<br/> 11.4.1 Fundamental Concepts<br/> 11.4.2 Job, Process, Thread, and Fiber Management API Calls<br/> 11.4.3 Implementation of Processes and Threads<br/>11.5 MEMORY MANAGEMENT<br/> 11.5.1 Fundamental Concepts<br/> 11.5.2 Memory Management System Calls<br/> 11.5.3 Implementation of Memory Management<br/>11.6 CACHING IN WINDOWS<br/>11.7 INPUT/OUTPUT IN WINDOWS<br/> 11.7.1 Fundamental Concepts<br/> 11.7.2 Input/Output API Calls<br/> 11.7.3 Implementation of I/O<br/>11.8 THE WINDOWS NT FILE SYSTEM<br/> 11.8.1 Fundamental Concepts<br/> 11.8.2 Implementation of the NT File System<br/>11.9 WINDOWS POWER MANAGEMENT<br/>11.10 SECURITY IN WINDOWS 8<br/> 11.10.1 Fundamental Concepts<br/> 11.10.2 Security API Calls<br/> 11.10.3 Implementation of Security<br/> 11.10.4 Security Mitigations<br/>11.11 SUMMARY<br/>CHAPTER 13 "OPERATING SYSTEM DESIGN"<br/>13.1 THE NATURE OF THE DESIGN PROBLEM<br/> 13.1.1 Goals<br/> 13.1.2 Why Is It Hard to Design an Operating System?<br/>13.2 INTERFACE DESIGN<br/> 13.2.1 Guiding Principles<br/> 13.2.2 Paradigms<br/> 13.2.3 The System Call Interface<br/>13.3 IMPLEMENTATION<br/> 13.3.1 System Structure<br/> 13.3.2 Mechanism versus Policy<br/> 13.3.3 Orthogonality<br/> 13.3.4 Naming<br/> 13.3.5 Binding Time<br/> 13.3.6 Static versus Dynamic Structures<br/> 13.3.7 Top-Down versus Bottom-Up Implementation<br/> 13.3.8 Useful Techniques<br/>13.4 PERFORMANCE<br/> 13.4.1 Why Are Operating Systems Slow?<br/> 13.4.2 What Should Be Optimized?<br/> 13.4.3 Space-Time Trade-offs<br/> 13.4.4 Caching<br/> 13.4.5 Hints<br/> 13.4.6 Exploiting Locality<br/> 13.4.7 Optimize the Common Case<br/>13.5 PROJECT MANAGEMENT<br/> 13.5.1 The Mythical Man Month<br/> 13.5.2 Team Structure<br/> 13.5.3 The Role of Experience<br/> 13.5.4 No Silver Bullet<br/>13.6 TRENDS IN OPERATING SYSTEM DESIGN<br/> 13.6.1 Virtualization<br/> 13.6.2 Multicore Chips<br/> 13.6.3 Large Address Space Operating Systems<br/> 13.6.4 Networking<br/> 13.6.5 Parallel and Distributed Systems<br/> 13.6.6 Multimedia<br/> 13.6.7 Battery-Powered Computers<br/> 13.6.8 Embedded Systems<br/> 13.6.9 Sensor Nodes<br/>13.7 SUMMARY<br/>CHAPTER 14 "READING LIST AND BIBLIOGRAPHY"<br/>14.1 SUGGESTIONS FOR FURTHER READING<br/> 14.1.1 Introduction and General Works<br/> 14.1.2 Processes and Threads<br/> 14.1.3 Memory Management<br/> 14.1.4 Input/Output<br/> 14.1.5 File Systems<br/> 14.1.6 Deadlocks<br/> 14.1.7 Virtualization and the CLoud<br/> 14.1.8 Multiple Processor Systems<br/> 14.1.9 Security<br/> 14.1.10 UNIX, Linux, and Android<br/> 14.1.11 Windows 8<br/> 14.1.12 Design Principles<br/>14.2 ALPHABETICAL BIBLIOGRAPHY.
650 ## - PUNTO DE ACCESO ADICIONAL DE MATERIA - TÉRMINO DE MATERIA
Término de materia o nombre geográfico como elemento inicial Systems Operating
650 ## - PUNTO DE ACCESO ADICIONAL DE MATERIA - TÉRMINO DE MATERIA
Término de materia o nombre geográfico como elemento inicial Linux
650 ## - PUNTO DE ACCESO ADICIONAL DE MATERIA - TÉRMINO DE MATERIA
Término de materia o nombre geográfico como elemento inicial Windows
650 ## - PUNTO DE ACCESO ADICIONAL DE MATERIA - TÉRMINO DE MATERIA
Término de materia o nombre geográfico como elemento inicial System Calls
700 ## - PUNTO DE ACCESO ADICIONAL - NOMBRE DE PERSONA
Nombre de persona Bos, Herbert
913 ## - ÁREA Y CARRERA
Área de Conocimiento Información y Comunicación (TIC)
Carrera Carrera de Computación
Líneas de Investigación Institucionales Soluciones computacionales para el sector agroproductivo y de servicios
942 ## - ENTRADA DE ELEMENTOS AGREGADOS (KOHA)
Fuente de clasificaión o esquema Dewey Decimal Classification
Koha [por defecto] tipo de item Libros
Holdings
Suprimido Perdido Fuente de clasificación o esquema Estropeado No para préstamo Localización permanente Localización actual Fecha adquisición Fuente de adquisición Coste, precio normal de compra Préstamos totales Clasificación completa Código de barras Fecha última consulta Fecha último préstamo Número de copia Fecha del precio de reemplazo Tipo de item de Koha
    Dewey Decimal Classification     CIBESPAM-MFL CIBESPAM-MFL 11/12/2016 Compra 275.11 12 005.43 / T164 002087 07/23/2018 07/23/2018 Ej: 1 11/12/2016 Libros